Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Añadir filtros

Tópicos
Revista
Tipo del documento
Intervalo de año
1.
Hla ; 101(4):367, 2023.
Artículo en Inglés | EMBASE | ID: covidwho-2302768

RESUMEN

In a study of two Hospitals in Saxony (Chemnitz and Leipzig), we analyzed the antibody development towards SARS-CoV-2 and against a variety of endemic coronaviruses. Here we analyzed 760 sera from a Saxonian cohort for antibody reactivity against: Common cold coronaviruses, HCoV-229E, HCoV-HKU 1, HCoV-NL63 and HCoV-OC43, MERS-CoV and SARS-CoV. For the SARS CoV-2 immune response we tested the following antigens: Spike, S1, S2, RBD and nucleocapsid. These 11 antigen determinants were tested in a commercial multiplex Luminex based assay. We tested sera from 544 individuals (347 females and 197 males;498 SARS-CoV-2 PCR positive and 262 SARS-CoV-2 PCR negative) between May 2020 and March 2022. We observed up to 10% reactivity against the MERS virus in both the PCR positive and negative group. Against the common cold corona viruses 80%-90 % of the individuals in both groups show detectable antibodies. Regarding the antibody response against SARS-CoV a significant difference was observe. Only 19% of COVID-19 infected individuals show antibodies against the virus, while 81% of the PCR-positive individuals produced antibodies. The presence of antibodies against the SARS-CoV-2 is positively correlated with those against SARS-CoV (p = 0.001). No changes in endemic antibody responses were see in the two groups. The antibody status after first immunization event (infection/ vaccination) shows differences in nucleocapsiddirected antibody production, found in the natural infection group (about 60%). In the vaccination group, more individuals (up to 95%) show an immune response against Spike, S1 and RBD compare with natural infection. In summary, the examined cohort shows a general immunization up to 90% against most endemic corona viruses. Correlation analyses show cross-reactivity between SARS-CoV-2 and SARS-CoV. Longitudinal antibody analyses are under way, as also correlations of humoral response with immunogenetic factors.

2.
Hla ; 101(4):373, 2023.
Artículo en Inglés | EMBASE | ID: covidwho-2298631

RESUMEN

Since the beginning of the SARS-Cov-2 pandemic, in 2020, numerous data with respect to the influence of immunogenetics to the predisposition and infection severity have been reported worldwide. It is well accepted that immunogenetics plays a pivotal role in infection and vaccination, as well as vaccination failures and/or breakthrough. Factors of the major histocompatibility complex and the common ABO blood group system have been so far discussed. Here, we describe the association of HLA-A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, -DPB1, and HLA-E, -F, -G, -H on the results of molecular detection of COVID-19 or in some cases on antibody detection upon first testing. Furthermore, we defined molecularly 22 blood group systems comprising 26 genes and 5 platelet antigen genes. We observed 37% COVID-19 PCR negative individuals and 63% positive. Within the negative subjects HLA-B*57:01, HLA-B*55:01, DRB1*13:01, DRB1*01:01, were enriched, and in the positive group homozygosity for DQA1/DQB1, DRB1*09:01 and DRB1*15:01. For HLA-DQA1 we observe an enrichment for DQA1*01:01, DQA1*02:01 and DQA1*01:03. For HLADQB1 we found HLA-DQB1*06:02 was enriched in the positive group while HLA-DQB1*05:01 and HLA-DQB1*06:03 in the negative group. We observed a significant enrichment of homozygosity for DQA1/DQB1 in the positive group. The homozygous platelet antigen HPA-1a was significantly enriched in the negative group, contrasting the result of HPA-1ab that was enriched in the COVID-19 infected group. Despite limitations of our study, the data presented here show clearly that COVID-19 infection and all the consequences of that are multifactorial and multigenetic. The virus is in a continuous mutation/selection process leading to escape possibilities. Therefore, associations are a momentum in science.

3.
Hla ; 99(5):528-529, 2022.
Artículo en Inglés | Web of Science | ID: covidwho-1848898
4.
Hla ; 98:10-11, 2021.
Artículo en Inglés | Web of Science | ID: covidwho-1411344
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA